Low-Order Aero-Structural Analysis Using OpenVSP and ASWing

Erik Olson, Ph.D.
NASA-Langley Research Center
Quinten Henricks, B.S.
Ohio State University

OpenVSP Workshop 2017
Outline

• Background & Motivation
• Methodology
• B737-200 Example
• Parametric Analysis
• Conclusions and Future Work
Background (1/2)

- Flight Optimization System (FLOPS) has shortcomings in weights estimation
 - Current state-of-the-art aircraft aspect ratios beyond FLOPS’ weights database
 - Weights equations based on conventional configurations and in-service technologies

- Updates to current empirical/semi-empirical regressions desired
 - Use physics-based analysis capabilities to capture new weight trends
 - New trends can be used to modify/replace current wing weight equations
 - Capability to analyze unconventional vehicles and advanced technologies

- Ongoing development under Higher-Order Design Environment (HOrDE) and Layered Extensible Aircraft Performance System (LEAPS) efforts
 - HOrDE seeks to develop multi-disciplinary and multi-fidelity design methodologies to enable higher-order analysis
 - Interaction with LEAPS team created a common baseline vehicle and associated load cases for consistent analyses
Background (2/2)

• Existing Low-Order Methods
 – Flight Optimization System (FLOPS) weight equations
 – Preliminary Design of Cylindrical Structures (PDCyl)
 – Equivalent Laminated Plate Solution (RELAPS)
 – AMMIT

• Finite-Element Based Methodologies Under Development
 – HCDStruct (Gern, Quinlan)
 – FEM-ready geometry (Li)
 – M4 Engineering PBWeight
 – Multi-fidelity structural analysis framework (Ga Tech, Laughlin)
 – Multi-fidelity aeroelastic modeling (UAlabama)
Motivation

• **Motivation**: Methodologies under development are relatively high-order and/or lack a full set of features (flutter, full-body flexible dynamics, gust response, time-domain calculations). There remains a niche for a full-featured, lower-order conceptual methodology.

• **Goal**: develop full-featured, low-order structural sizing methodology which is more applicable to more modern structures (e.g. high-AR wings) and unconventional concepts (e.g. truss-braced wing) than existing weight equations, by leveraging existing tools.
Outline

- Background & Motivation
- Methodology
- B737-200 Example
- Parametric Analysis
- Conclusions and Future Work
OpenVSP Degenerate Geometry

Surface

Plate

Point

Stick
Example for an analysis method based on the degenerate Stick model
ASWing Aero-Structural Analysis

Equivalent-beam structure + lifting-line aero

Degenerate Stick Properties of Interest

Properties calculated at each spanwise node:

- **Shell**
 - Center of mass: \(\mathbf{x}_{cg} \)
 - Moments of inertia: \(\bar{I}_{11}, \bar{I}_{22}, \bar{I}_{12} \) (for uniform unit wall thickness)
 - Perimeter: \(p \)

- **Solid**
 - Center of mass: \(\mathbf{x}_{cg} \)
 - Moments of inertia: \(I_{11}, I_{22}, I_{12} \)
 - Area: \(A \)
Preparing Degenerate Model for ASWing

- **Stick models**, specify spanwise variation of:
 - material moduli E, G
 - shell thickness (constant-thickness cross section)
 - shell density (structural material)
 - solid density (fuel or payload)

- **Point models**, specify:
 - density (point masses)
 - internal pressure (fuselage pressurization)
Assume (1) thin-walled structure, with (2) constant E, G, and t at each cross section. For each cross section, define:

- **Stiffness Matrix**
 - $(EI)_{cc} = Et\bar{I}_{11}$
 - $(EI)_{nn} = Et\bar{I}_{22}$
 - $(EI)_{cn} = Et\bar{I}_{12}$
 - $GJ = Gt(\bar{I}_{11} + \bar{I}_{22})$
 - $EA = Etp$
 - $(EI)_{cs} = (EI)_{sn} = (GK)_{cc} = (GK)_{nn} = 0$

- **Mass Moments of Inertia**
 - Shell (structural material)
 - Solid (payload, fuel, etc.)

- **Center of Mass, Elastic Axis, Tension Axis**
 - $\mathbf{x}_{ea} = \mathbf{x}_{ta} = \mathbf{x}_{cg}$ (follows from thin-walled assumption)

- **Sectional aero (lifting surfaces)**
 - $c_{\ell_0}, c_{\ell_\alpha}, c_{\ell_{max}}, c_{d_0}, c_{m_0}$, control derivatives

Resultant Moments and Forces

Moments

Forces

\[M_n \]
\[M_s \]
\[M_c \]

\[F_n \]
\[F_s \]
\[F_c \]

Post-Processing for Stresses

- **Stick stresses** (constant over cross section)
 - Torsional shear:
 \[
 \tau_{Ms} = \frac{M_s}{2A_{solid}}
 \]
 - Extensional stress:
 \[
 \sigma_{Fs} = \frac{F_s}{pt}
 \]
 - Pressurization:
 \[
 \sigma_p = \frac{PR}{t}
 \]

- **Surface stresses**
 - Bending about c:
 \[
 \sigma_{Mc} = -\frac{M_{cI_{nn}}-M_{nI_{cn}}}{I_{ccI_{nn}}-I_{cn}^2} \Delta n
 \]
 - Bending about n:
 \[
 \sigma_{Mn} = \frac{M_{nI_{cc}}-M_{cI_{cn}}}{I_{ccI_{nn}}-I_{cn}^2} \Delta c
 \]
 - Transverse shear along c:
 \[
 \tau_{Fc} = -\frac{F_{cI_{cc}}}{I_{ccI_{nn}}-I_{cn}^2} t \int_0^p \Delta c \ ds + \tau_{c_0}
 \]
 - Transverse shear along n:
 \[
 \tau_{Fn} = -\frac{F_{nI_{nn}}}{I_{ccI_{nn}}-I_{cn}^2} t \int_0^p \Delta n \ ds + \tau_{n_0}
 \]
Principal and von Mises Stresses

• Combined Stresses
 – Total direct stress: \(\sigma_{TOT} = \sigma_{Mc} + \sigma_{Fs} + \sigma_{Mn} \)
 – Total shear stress: \(\tau_{TOT} = \tau_{Fc} + \tau_{Ms} + \tau_{Fn} \)
 – Principal stresses: \(\sigma_{1,2} = \frac{1}{2} \left(\sigma_{TOT} \pm \sqrt{\sigma_{TOT}^2 + 4\tau_{TOT}^2} \right) \)
 – Von Mises stress: \(\sigma_v = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2} \)

• Max. Surface Stress
 – maximum principal and von Mises stresses over all load cases, including separate pressurization case

• Max. Stick Stress
 – maximum principal and von Mises stresses over each cross section over all load cases
Integrated Analysis/Sizing Process

Design Variables
- Flight conditions
- Target lift distribution (elliptical)

Design wing twist to match target lift distribution

Iterate wing box structural thickness for fully stressed wing

ModelCenter® model
Twist Optimization Process

- Formulate a matrix equation $Ax = b$, where
 - A_{ij} is the change in the spanwise loading coefficient ($ccℓ$) at reference station i due to a change in twist basis coefficient j, and
 - b_i is the residual at reference station i. Therefore,
 - x_j is the change in coefficient j required to match the target lift distribution

- Calculate influence matrix, A, by individually perturbing the coefficients and calculating the resulting change at the set of reference stations.

- Solve for x using a pseudo-inverse (least-squares).
Structural Thickness Optimization Process

• Choose an initial structural thickness distribution
• Calculate the corresponding maximum von Mises stress distribution
• At each spanwise reference station, update the structural thickness by the ratio of the allowable and maximum stresses:

\[t_{new} = t_{old} \frac{\sigma_{\text{allowable}}}{\sigma_{\text{vmax}}} \]

• Impose minimum gauge
• Iterate to convergence
Outline

• Background & Motivation
• Methodology
• B737-200 Example
• Parametric Analysis
• Conclusions and Future Work
• Wing and tail torsion boxes created using duplicate wing components that are truncated at forward and rear spar.
• Weight items with easily definable locations represented by blanks with a specified mass (from FLOPS)
Distributed Weight Components

Shell and volume densities calibrated to match FLOPS weight estimates

<table>
<thead>
<tr>
<th>Location in Model</th>
<th>FLOPS Weight Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing box shell</td>
<td>wing structure</td>
</tr>
<tr>
<td>Horiz. tail box shell</td>
<td>horiz. tail structure</td>
</tr>
<tr>
<td>Vert. tail box shell</td>
<td>vert. tail structure</td>
</tr>
<tr>
<td>Fuselage shell</td>
<td>fuselage structure</td>
</tr>
<tr>
<td>Wing box volume</td>
<td>mission fuel, tanks & plumbing, hydraulics, anti-ice, unusable fuel</td>
</tr>
<tr>
<td>Fuselage volume</td>
<td>passengers, instruments, electrical, avionics, a/c, crew, baggage, pax service, cargo containers, cargo</td>
</tr>
<tr>
<td>Nacelle volume</td>
<td>engines, thrust reversers, engine oil</td>
</tr>
</tbody>
</table>
Sectional Aero (DATCOM)

$C_{\ell 0}, C_{\ell \alpha}, C_{\ell \text{max}}, C_{d0}$

Lift-curve Slope, deg⁻¹

Spanwise Distance, ft

Horizontal tail
Wing
Load Cases

<table>
<thead>
<tr>
<th>Name</th>
<th>N</th>
<th>Sideslip (deg)</th>
<th>H. tail (deg)</th>
<th>Elevator (deg)</th>
<th>Rudder (deg)</th>
<th>Aileron (deg)</th>
<th>Thrust</th>
<th>Roll rate (deg/s)</th>
<th>Pitch rate (deg/s)</th>
<th>U_z (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruise</td>
<td>1.0</td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5-g Pull-up</td>
<td>2.5</td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0-g Pushover</td>
<td>-1.0</td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi bump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Dynamic over-swing</td>
<td>1.0</td>
<td>5</td>
<td>trim</td>
<td></td>
<td>-27</td>
<td>trim</td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rudder reversal</td>
<td>1.0</td>
<td>5</td>
<td>trim</td>
<td></td>
<td>27</td>
<td>trim</td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial roll+</td>
<td>1.0</td>
<td>trim</td>
<td></td>
<td>trim</td>
<td>-20</td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial roll-</td>
<td>1.0</td>
<td>trim</td>
<td></td>
<td>trim</td>
<td>20</td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checked roll+</td>
<td>1.0</td>
<td>trim</td>
<td></td>
<td>trim</td>
<td>20</td>
<td>trim</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checked roll-</td>
<td>1.0</td>
<td>trim</td>
<td></td>
<td>trim</td>
<td>-20</td>
<td>trim</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial pitch+</td>
<td>1.0</td>
<td></td>
<td>-17</td>
<td></td>
<td></td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial pitch-</td>
<td>1.0</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td>trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checked pitch+</td>
<td>1.0</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td>trim</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checked pitch-</td>
<td>1.0</td>
<td></td>
<td>-17</td>
<td></td>
<td></td>
<td>trim</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B737-200 Sized Wing-Box Thickness

Max. Stress

Max. von Mises Stress, psf

Structural Thickness, ft

Spanwise Fraction

Transformation Tools and Technologies Project --- Higher-Order Design Environment
B737-200 Stress and Deflection

Maximum von Mises Stress for All Load Cases

Wing Deflection (2.5-g Pull-up)

Maximum von Mises Stress: 6.1 ft
Outline

• Background & Motivation
• Methodology
• B737-200 Example
• Parametric Analysis
• Conclusions and Future Work
Parametric Study Setup

- Full-factorial parametric study to check robustness
 - Vertex points of design space
 - Used as a troubleshooting device
 - Variable sensitivity check

- Central-composite design study
 - Used to create wing weight equation
 - Nearly-linear response to design variables makes quadratic model suitable
Wing Weight Equation Fit Metrics

\[R^2 = 0.9985 \]

- Predicted Weight (Kips)
- Actual Weight (Kips)
- Approximate Error (lbs)
Comparison of Wing Weight Trends

- Aspect Ratio vs. Predicted Wing Weight, lb
- Wing Area, ft² vs. Predicted Wing Weight, lb
- t/c Factor vs. Predicted Wing Weight, lb
- Fuel Weight, lb vs. Predicted Wing Weight, lb
Effect of Minimum Gauge

\[t_{\text{min}} = 0.01 \text{ ft} \]

\[t_{\text{min}} = 0.02 \text{ ft} \]
Outline

• Background & Motivation
• Methodology
• B737-200 Example
• Parametric Analysis
• Conclusions and Future Work
Conclusions

• Parametric analysis shows expected physical trends
• Wing weight more sensitive to aspect ratio than FLOPS
• Trend lines are sensitive to choice of minimum gauge
Future Work

• Adjust allowable stress to match expected deflections
• Examine calibration strategies
• Separate thicknesses for front/rear spars, upper/lower skins
• Additional load cases
 – Crash loads
 – Dynamic taxi bump
 – Dynamic gust loads
• Unconventional configurations (hybrid wing-body, truss-braced wing)
• Advanced materials
• Flutter analysis and sizing
Acknowledgements

This work was conducted as part of the NASA Transformational Tools and Technologies Project, led by Michael Rogers (acting), within the Multi-Disciplinary Design, Analysis and Optimization element, led by Patricia Glaab.

Thanks to Jason Welstead, Jess Quinlan (NASA) and Gregory Wrenn (AMA) for 737-200 models and data.